p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23⋊3M4(2), C42.296C23, C4.1672+ 1+4, C8⋊9D4⋊39C2, C4⋊C8⋊51C22, (C4×D4).33C4, C24.84(C2×C4), C8⋊C4⋊29C22, C22⋊C8⋊45C22, (C2×C4).670C24, (C2×C8).431C23, C42.221(C2×C4), (C22×C8)⋊54C22, (C22×D4).42C4, C24.4C4⋊34C2, C42.6C4⋊50C2, (C4×D4).298C22, C22.4(C2×M4(2)), C2.27(Q8○M4(2)), (C2×M4(2))⋊44C22, (C23×C4).529C22, C23.228(C22×C4), C22.194(C23×C4), (C2×C42).780C22, C2.18(C22×M4(2)), (C22×C4).1281C23, C2.44(C22.11C24), (C2×C4×D4).76C2, (C2×C4⋊C4).76C4, C4⋊C4.228(C2×C4), (C2×C22⋊C8)⋊45C2, (C2×D4).234(C2×C4), C22⋊C4.76(C2×C4), (C2×C22⋊C4).50C4, (C2×C4).275(C22×C4), (C22×C4).138(C2×C4), SmallGroup(128,1705)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23⋊3M4(2)
G = < a,b,c,d,e | a2=b2=c2=d8=e2=1, ab=ba, eae=ac=ca, ad=da, dbd-1=bc=cb, be=eb, cd=dc, ce=ec, ede=d5 >
Subgroups: 388 in 228 conjugacy classes, 134 normal (24 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C8⋊C4, C22⋊C8, C4⋊C8, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C4×D4, C22×C8, C2×M4(2), C23×C4, C22×D4, C2×C22⋊C8, C24.4C4, C42.6C4, C8⋊9D4, C2×C4×D4, C23⋊3M4(2)
Quotients: C1, C2, C4, C22, C2×C4, C23, M4(2), C22×C4, C24, C2×M4(2), C23×C4, 2+ 1+4, C22.11C24, C22×M4(2), Q8○M4(2), C23⋊3M4(2)
(1 18)(2 19)(3 20)(4 21)(5 22)(6 23)(7 24)(8 17)(9 26)(10 27)(11 28)(12 29)(13 30)(14 31)(15 32)(16 25)
(2 28)(4 30)(6 32)(8 26)(9 17)(11 19)(13 21)(15 23)
(1 27)(2 28)(3 29)(4 30)(5 31)(6 32)(7 25)(8 26)(9 17)(10 18)(11 19)(12 20)(13 21)(14 22)(15 23)(16 24)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(2 6)(4 8)(9 21)(10 18)(11 23)(12 20)(13 17)(14 22)(15 19)(16 24)(26 30)(28 32)
G:=sub<Sym(32)| (1,18)(2,19)(3,20)(4,21)(5,22)(6,23)(7,24)(8,17)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,25), (2,28)(4,30)(6,32)(8,26)(9,17)(11,19)(13,21)(15,23), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,25)(8,26)(9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,6)(4,8)(9,21)(10,18)(11,23)(12,20)(13,17)(14,22)(15,19)(16,24)(26,30)(28,32)>;
G:=Group( (1,18)(2,19)(3,20)(4,21)(5,22)(6,23)(7,24)(8,17)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,25), (2,28)(4,30)(6,32)(8,26)(9,17)(11,19)(13,21)(15,23), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,25)(8,26)(9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,6)(4,8)(9,21)(10,18)(11,23)(12,20)(13,17)(14,22)(15,19)(16,24)(26,30)(28,32) );
G=PermutationGroup([[(1,18),(2,19),(3,20),(4,21),(5,22),(6,23),(7,24),(8,17),(9,26),(10,27),(11,28),(12,29),(13,30),(14,31),(15,32),(16,25)], [(2,28),(4,30),(6,32),(8,26),(9,17),(11,19),(13,21),(15,23)], [(1,27),(2,28),(3,29),(4,30),(5,31),(6,32),(7,25),(8,26),(9,17),(10,18),(11,19),(12,20),(13,21),(14,22),(15,23),(16,24)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(2,6),(4,8),(9,21),(10,18),(11,23),(12,20),(13,17),(14,22),(15,19),(16,24),(26,30),(28,32)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 2J | 2K | 4A | 4B | 4C | 4D | 4E | ··· | 4J | 4K | ··· | 4P | 8A | ··· | 8P |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | ||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C4 | M4(2) | 2+ 1+4 | Q8○M4(2) |
kernel | C23⋊3M4(2) | C2×C22⋊C8 | C24.4C4 | C42.6C4 | C8⋊9D4 | C2×C4×D4 | C2×C22⋊C4 | C2×C4⋊C4 | C4×D4 | C22×D4 | C23 | C4 | C2 |
# reps | 1 | 2 | 2 | 2 | 8 | 1 | 4 | 2 | 8 | 2 | 8 | 2 | 2 |
Matrix representation of C23⋊3M4(2) ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 16 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 15 | 1 | 16 | 16 |
0 | 0 | 0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 15 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
0 | 16 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 16 | 0 |
0 | 0 | 15 | 0 | 15 | 16 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 2 | 16 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 2 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 15 | 0 | 15 | 16 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,15,0,0,0,16,16,1,0,0,0,0,0,16,0,0,0,0,0,16,1],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,15,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[0,4,0,0,0,0,16,0,0,0,0,0,0,0,16,15,0,2,0,0,0,0,0,16,0,0,16,15,1,0,0,0,0,16,0,0],[1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,2,0,15,0,0,0,16,0,0,0,0,0,0,1,15,0,0,0,0,0,16] >;
C23⋊3M4(2) in GAP, Magma, Sage, TeX
C_2^3\rtimes_3M_4(2)
% in TeX
G:=Group("C2^3:3M4(2)");
// GroupNames label
G:=SmallGroup(128,1705);
// by ID
G=gap.SmallGroup(128,1705);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,1430,219,675,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^8=e^2=1,a*b=b*a,e*a*e=a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^5>;
// generators/relations